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1 INTRODUCTION

Electric distribution networks are the final leg of the
network that moves electric power from generating
stations to end users. The vast majority of the
circuits in these networks are above ground, where
they are exposed to direct damage from strong
winds, broken tree limbs, toppled trees, and flying
debris. These systems are also susceptible to winter
storms. The combined stress of the weight of
ice (icing), the increased wind resistance of the
conductors, and broken tree limbs can damage lines,
poles, and support structures.

These networks are generally operated in a radial
configuration, which makes them susceptible to
single-point failures. Some redundancy is built
into these networks through circuit switching and
alternative power supply points in the network. This
redundancy can be overwhelmed by hurricanes and
major ice storms that cause widespread damage.
The exposure and limited redundancy of these
networks makes them the primary cause of long-
term electric outages following hurricanes and
major ice storms.

This paper focuses on electric power outage
forecasting for hurricane-force winds and winter
conditions in a data-poor environment when
distribution network models are not generally
available. The remainder of this paper is organized
as follows. Section 1 provides additional context
for the problem setting and the importance
of this capability development to the National
Infrastructure Simulation and Analysis Center

(NISAC). Section 2 describes the scope of the work.
Section 3 describes the modeling approach used
to forecast outages caused by both hurricane-force
winds and icing conditions. Section 4 and Section 5
describe the model development, the input data, and
the model results of the hurricane-force winds and
the icing conditions models respectively. The report
ends with a summary in Section 6.

1.1 Problem Statement

Distribution utilities use first principles–based
power flow solvers on detailed models of their
electric distribution network to simulate effects of
local faults or other upsets to their systems. The
origin of these faults is generally not specified;
rather, the study goal is to design the network
redundancy and operations to mitigate these
assumed faults. These detailed models could be
extended to evaluate or predict outages resulting
from heavy, widespread damage scenarios, but
several conditions would have to be met. Among
these conditions are the availability of the model,
the geolocation of the components in the model,
and the availability of sufficient power system
component metadata to enable accurate fragility
estimates for hurricane-force winds and icing
conditions.

Distribution network model availability is a
significant challenge. As of 2017, detailed
distribution network models and data are not
routinely reported to any federal agency. Access to
models and data is feasible only via nondisclosure
agreements (NDAs) with each distribution utility,
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and there are several thousand distribution utilities
in the continental United States (CONUS).
Although collecting a few detailed models is
feasible and desirable for focused studies, this
approach is impractical for CONUS-scale studies
or even within hurricane-prone areas because of the
number of NDAs required.

Even if collecting a large number of detailed
distribution models was feasible, the format of
these models can be quite diverse; as such,
consistent conversion from one format to another
is difficult. Many distribution network databases
are now fully geolocated; however, in our recent
experience, component metadata are sparse or
missing entirely and fragility estimates would
require many assumptions about component quality
and type.

1.2 Importance

The ability to predict electric outages resulting
from hurricane-force winds and ice damage to
electric distribution networks is key for electric
power systems analysis for these extreme events.
It is also a key step in the analysis of cascading
failures in critical or lifeline infrastructure networks
that depend directly or indirectly on electric power.

2 BOUNDING REQUIREMENTS AND
LIMITATIONS

The electric power forecasting model discussed in
this report is intended for use within the NISAC.
Analysis scope, metrics utilized, available input
data, and desired output results are subject to key
bounding requirements and limitations.

2.1 Analysis Scope

The electric power outage forecasting model,
associated literature review, and subsequent
development of methods considers all CONUS
locations. The model’s primary function is to
estimate the expected electric power outages
from hurricane-force winds or icing conditions

at a county-level spatial scale. The NISAC lacks
access to detailed distribution network models,
so these estimates will be made using area-based
statistical models that are trained on utility-reported
historical outage data and a set of publicly available
regressors. Output of the predictive model will be
the number of customers without electric power
within each county in the CONUS.

2.2 Input Data: Scope and Limitations

The scope of the electric power outage forecasting
model is the CONUS at the county level; therefore,
input data to the forecasting tool should be
uniformly and publicly available for all of the
CONUS at that scale. The input data must be
routinely maintained and updated by the original
data provider or the NISAC so that the model can be
run as dynamic conditions change (e.g., storm track
and precipitation) and static or slowly changing
input data evolve (e.g., population, soil moisture,
and vegetation).

3 MODEL

Table 1 lists the input data or predictor variables.
There are three types of predictors:

1. Static variables: variables that do not need
to be frequently updated, such as population,
elevation, land cover, tree species, and soil
texture.

2. Dynamic variables: variables related to the
event that need to be updated as the dynamic
conditions change. For an event such as a
hurricane, the sustained wind speed, maximum
wind gust, and wind gust duration are dynamic
variables. For an winter storm, the dynamic
variables are temperature, ice thickness, snow
accumulation, and wind intensity.

3. Time-dependent variables: variables calculated
over a specific period of time preceding the
event. The soil moisture and the standardized
precipitation index (SPI) are the two time-
dependent variables.
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Table 1. electric Power Forecasting Model Input Data

Predictor Source training Source forecast Temporal Spatial
resolution resolution

Maximum sustained wind NOAA-Hurdat2 NHC 6 hours County
Maximum gust wind Estimated County
Gust wind duration Estimated County
Population density SEDAC 2010 SEDAC 2010 250m x 250m

Tree species GECSC GECSC 250m x 250m
Soil texture Polaris Polaris 250m x 250m
Land cover NLCD2011 NLCD2011 250m x 250m
Elevation DEM-GMTED DEM-GMTED 250m x 250m

Soil moisture NOAA-CPC NOAA-CPC Daily 10 x 10km
SPI NOAA-NCDC NOAA-NCDC Daily Point (weather stations)

For the dynamic and time-dependent variables
we can find different data sources. For the electric
Power Forecasting Model, the appropriate data need
to provide (1) historical values over the same time
period as that of the outage data we used to train
the model (from October 2010 to July 2017), and
(2) daily updated values to allow forecasting.

For each variable, Table 1 reports the sources used,
the temporal and spatial resolution.

Surface Soil Moisture: As a support for the
National Integrated Drought Information System
(NIDIS), the Climate Prediction Center (CPC)
provides a daily map of the surface soil moisture
for the entire United States. The values estimated
by the CPC soil moisture tool as part of the
National Weather Service Global Forecast System
is calculated using a one-layer hydrological model
(Huang et al., 1996, and van den Dool et al., 2003),
which calculates soil moisture, evaporation, and
runoff using as forcing observed precipitation and
temperature . The data provided by CPC cover the
time range for which we have outage data to train
the electric Power Forecasting Model.

Standardized Precipitation Index: The SPI is
an index used to define and monitor drought. It
is calculated as the cumulative probability of a
given rainfall event occurring in a specific location.
Using historical precipitation data, we estimate
the probability of the precipitation being greater
than or equal to the median precipitation from
a predefined time scale (1, 6, and 12 months)

using the approach described in (6) Positive SPI
values indicate precipitations greater than median
precipitation. Droughts are represented by high
negative deviations. To calculate the SPI, we use the
US weather station precipitation values supplied by
the National Centers for Environmental Information
(formerly the NOAA National Climatic Data Center
[NOAA-NCDC]).

Maximum Sustained Wind: Historical data are
provided by the National Hurricane Center (NHC)
in the best tracks data set, HURDAT2, that is
updated yearly. The tracks are provided on a 6-
hour interval and include the maximum sustained
wind during the period of the storm for each county
affected by the storm. The NHC also forecasts
storm tracks, supplying the maximum sustained
wind. Using the NHC tracks and the HURDAT2
as the input, we calculate the maximum gust and
its duration for each county affected by the storm
using the wind model developed by (1).

Population Density: Data are provided by Ohio
State University at 250 x 250 m resolution and
estimated using the 2010 Socioeconomic Data
and Applications Center (SEDAC) at Columbia
University.

Tree Species, Land Cover, Soil Texture, and
Elevation: Data are provided by Ohio State
University at 250 x 250 m resolution and
estimated from the Geoscience and Environmental
Change Science Center (USGS), the 2010 National
Land Cover Database (NLCD), the Soil Survey
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Geographic Database (SSURGO), and the 2010
Global Multi-resolution Terrain Elevation Data
(GMTED2010), respectively.

3.1 Resampling Predictors

With the exception of the surface soil moisture
and the weather-related variables (e.g., temperature,
precipitation, and snow accumulation), predictor
variables are provided at high spatial resolution,
finer than the county scale, which is the spatial
resolution of the response data, historical outages,
used to train the outage model. To resample the
high-resolution predictor variables to the same scale
as the response data, we use a spatial averaging
weighted by the population density.

Soil moisture is provided as a GIS shapefile of
polygons at a lower resolution than the county scale
and its value is estimated using an average weighted
by the area of the county that intersects the soil
moisture polygon.

The variables that are weather-dependent, such as
temperature, snow accumulation, and precipitation,
are provided at the locations of the weather stations.
The county value of these variables is estimated
as the average of the stations in the counties. For
counties that do not have weather stations, we take
the average over the three weather stations spatially
closest to the center of these counties.

3.2 Model Training Data

The forecasted response variable is the number
of customers without electric power in each county.
To train the model, we used historical outage data
from the EAGLE-I database (EAGLE-I), which
collects near real-time electric power outage data.
The database includes outages reported by the
utilities for most of the counties in the CONUS. The
predictor variables are quite diverse and include
hurricane gust wind speed, population, land cover
type, SPI, and soil moisture index.

3.3 Model Implementation Data

To implement the model for real-time events, we
require the dynamic set of predictor variables to be
available and updated in real time.

3.4 Model

The storm data were fit using a random forest.
Random forest is a nonparametric data mining
ensemble approach developed by Breiman (2)
that mitigates the tendency of regression trees to
overfit. It creates many regression trees using a
random subset of samples from the full training
data set. Each regression tree is used to make an
independent prediction of the dependent variable;
these predictions are averaged to make the ensemble
prediction. By randomly sampling from the
training data, the regression trees are approximately
uncorrelated and unbiased, which results in better
aggregate performance.

The random forest model is trained using
historical county-level electric power customer
outage data for storm events that were taken from
the EAGLE-I database. The following process was
used to train and characterize the model:

1. Subdivide the original training data randomly
into 10 equal-size subsets and create 10 new
training sets by sequentially holding out one of
the subsets

2. Train 10 random forest models, one for each
of the 10 new training data sets, using standard
methods in the software package R

3. Calculate the prediction error for the hold-out
data for each of the 10 random forest models

The best-fitting model is the one that explains
the most variability, has the lowest mean squared
residuals, and has the lowest mean absolute error
(MAE) and root mean square error (RMSE). The
MAE is an absolute measurement of the difference
between the predicted value and the true value,
which is calculated by

MAE =
1

n

n∑
i=1

|ŷi − yi|
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The RMSE measures the magnitude of error of the
predicted values and variability and is defined as

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2

To assess model performance of the random forest,
we looked at variance explained in each model,
RMSE and MAE for a subset of models using
cross-validation, and partial dependence plots.

To estimate the influence of the different variables
in the model, partial dependence plots were used.
Partial dependence plots show the influence of a
regressor on the response variable when the rest
of the regressors are factored out (4). The partial
dependence is calculated as

ft(Xt) =
1

N

N∑
i=1

f(Xt, xic) (1)

where Xt is the regressor that the partial dependence
plot is being calculated for and N is the total number
of observations. The plot looks at the marginal
effect of Xt on the response ft while accounting for
the other marginal influences, xic, on ft.

4 TROPICAL STORMS AND
HURRICANE MODEL

The tropical storms model compares two types of
storms: (1) all tropical storms and hurricanes from
2011 to 2016 and (2) hurricanes from 2011 to 2016.
The purpose of the comparison was to see whether
there are differences in the fit of the random forest
models when taking into account all storms (low-
and high-intensity storms) vs. only hurricanes (very
high-intensity storms).

4.1 Data

4.1.1 Tropical Storms and Hurricanes

The data consist of 17 total storms (14 tropical
storms and 3 hurricanes) from 2011 to 2016. The
number of counties that had reported outages varied,
ranging from 17 to 450. The total number of

counties affected by outages per storm is provided
in Figure 1. For Tropical Storm Hermine, 450
counties reported outages, which is more than all
other storms. At the other end of the spectrum,
Tropical Storm Don affected only 17 counties based
on the outage data. Generally, this would imply that
Don was a minor storm in comparison to Hermine.
However, it is important to note that a large number
of counties with reported outages does not imply
that the storm (i.e., Hermine) caused the greatest
number of outages. This is demonstrated in Figure
2, the log number of outages per storm. The three
hurricanes, Matthew, Sandy, and Irene, caused the
largest number of outages. Because the wind speeds
and intensity are generally higher for these types of
storms, they have a greater impact on the number
of outages.

4.1.2 Eagle-I Data

The Eagle-I data were used to report the number
of outages corresponding to the duration of a
hurricane or tropical storm. For each county,
utilities report outages every 15 minutes during the
duration of the storm. In our model, we use the
maximum sustained outage over a 2-hour window.
We do this by first finding the minimum number
of outages across a 2-hour window and then taking
the maximum of the minimum outages during the
entire time of the storm. To illustrate this, Figures
3 and 4 show the difference in calculation for
Hurricane Matthew in Baldwin County, Georgia
and Fulton County, Georgia. The red line is the
2-hour sustained minimum outages (centered) and
the black line is the actual reported outage every 15
minutes. In Baldwin County, there is a large spike
of reported outages around October 5 at 12:00 pm.
However, this spike was not sustained over the 2
hours. Either the issue was resolved very fast or
there is some indication that noise appears in the
reported outages. Fulton County, Georgia’s most
populated county, has a different outage structure.
Again there are spikes of outages, but the maximum
number of sustained (2-hour) outages across the
time period was around 750 reported outages. If the
maximum number of outages was reported instead,
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the outages would be over-reported. For example,
in Fulton County, 1600 outages is the maximum
vs. 750 outages for the 2-hour sustained. The 1600
outages occurred for a maximum of 30 minutes in
this particular county. We chose to use a 2-hour
window of sustained outages to eliminate noise in
the Eagle-I data and because customers that are
affected for longer periods of time are of greater
interest.

4.1.3 Regressors for Storms

• Latitude and longitude
• Month of the hurricane
• Population density, elevation
• SPI for months 1, 6, and 12 before a storm,

matched to the starting month of a storm
• Weather variables:
• Maximum 3-second wind speed
• Duration of time when wind speed exceeded

20 m/sec for each county
• Maximum sustained wind speed
• Maximum sustained wind gusts

• Land cover (counties with any missing values
removed)

• Tree species
• Soil texture
• Soil moisture (not used because of too many

missing observations)

Month of the storm represents the month that
the storm started. If the storm duration was over
multiple months, it is denoted as the month in
which the storm first hit land. This was to help
account for the seasonality of the storms (early
months vs. later months). The tree species are
reported as proportions of the county that have a
particular type of tree. The total proportion across
all trees (41 tree species) sums to 1. The land
cover consists of 11 different categories, including
percent land developed, percent woody, percent
shrubs. Similarly to tree types, the proportions
across the land types sum to 1. SPI is reported
for 1, 6, and 12 months before a storm and is
matched to the starting month of a storm event. For

instance, Hurricane Matthew started in October and
the corresponding SPI values for 1, 6, and 12 prior
correspond to September, March and the previous
October. Latitude and longitude were included as
an indicator of spatial location; generally counties
further from the coast have fewer reported outages.

4.2 Model Results

Using raw outage counts, we fit three
progressively simpler random forest models. In
the first model, all of the regressors discussed in
the previous section were included. In the second
model, principal components for tree species and
for land cover types were included in place of the
proportional data. We chose three components
for the tree species and three components for
the land cover types based on scree plots and
the negligible contribution of the subsequent
principal components. The third model removed all
regressors relating to land cover and tree species.
These same three models were also fit using log
outage counts and 100 plus counts with a log
transformation instead of counts on the nominal
scale. The results are displayed in Table 2. The
table displays three different methods for assessing
model performance: using raw outage counts, using
a log transformation of the counts, and using a log
transformation and adding 100 to the counts. The
100 plus counts were used so that the random forest
weighted the higher outage counts more heavily.
The model that explains the most variation is the
log(100+counts) random forest model. The percent
variation explained ranged from about 70–72%
when all the storms were used in the analysis to
about 73–74% for random forest models with only
the data from the three hurricanes. Furthermore,
the model with the first three principal components
and the reduced model without land cover and tree
species fit the best.

4.2.1 Cross-Validation Results

Cross-validation is a way to assess model
performance based on minimizing the out-of-
sample error. We used a 10-fold random hold-out
validation test for our models. For each model, we
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randomly selected 10% of the data, trained the
model with the remaining data, and predicted the
data from the held-out sample. We calculated the
RMSE and MAE for the out-of-sample predictions.
This was repeated 10 times to cover the entire
dataset.

Table 3 presents 10-fold cross-validation
estimates of RMSE and MAE for the three models
that predict outages on a log scale. In comparison,
Table 4 presents 10-fold cross-validation estimates
for the log(100+counts) scale. The cross-validation
results reveal that the random forest models do not
differ much from model to model; the differences
in the RMSE and MAE are very small for both
the log and log(100+counts) models. In the log
model, there is a slight reduction in the RMSE
and MAE for the hurricane-only data for the full
model but no corresponding reduction with respect
to the principal component analysis (pca) and
reduced models. It is more important to note that the
log(100+counts) results suggest that the all-storms
model fits better when the MAEs and RMSEs are
lower. In general, this implies that the random
forest model with all the storm data performs about
as well as the hurricane-only data random forest
model, so we will proceed with results using all the
storms. In the case of the models with all storms,
the pca model and the reduced model perform
about the same, so we chose to use the pca model
to keep more of the regressors in the model. To
further understand the impact of using different
transformations, i.e. log vs. log(100+counts), a
comparison of the bias, standard deviation, and
RMSE is provided to help determine which random
forest model to choose. To make comparisons
across the two different transformations of the data,
the RMSE was calculated as

RMSE =

√√√√ 1

n

n∑
i=1

(
yi
ŷi
− 1

)2

The idea is that if the difference between
observation y and predicted value ŷ is small,
then the ratio would be close to 1, therefore not
contributing much to the error. On the other hand,

if the difference in values is high, then the ratio
would be much greater than 1 when the actual
counts are underpredicted and much lower than 1
when the actual counts are overpredicted. Table
5 shows the difference between the log10(counts)
and log10(100+counts) random forest models for
the following intervals: 0 − 100, > 100 − 1000,
> 1000−10000,> 10000−100000, and > 100000.
As Table 5 shows, the bias, standard deviation,
and RMSE are lower using the log10(100+counts)
model for every interval except the low counts
and very high counts. However, the high count
category (> 100000) has only a few observations;
with more observations, the bias and RMSE would
tend to be lower. Additionally, although the bias
is larger for the log10(100+counts) random forest
model, that is a trade-off to get better predictions for
outages over 100. Figure 5 shows how well the base
pca random forest model with log10(100+counts)
predicts the outages from all the storms. The
range from 100 on fits fairly well; most of the
observations are close to the line. The outages
are overpredicted for the lower counts, but that is
due to the transformation of log10(100+counts).
The bias, standard deviation, and RMSE were
also compared for each hurricane (Table 6). The
takeaway from comparing the predictions using the
pca random forest model with log10(100+counts)
is that there are differences in the biases depending
on the geographic region where the storm occurred.
For example, the bias is not as high for Hurricane
Matthew as for Hurricanes Sandy and Irene for
outages over 1000. Both Sandy and Irene made
landfall further north, whereas Matthew hit land in
the south.

4.2.2 Hold-out Example Using Reduced
Model with PCA

The all-storms random forest model with three
principal components and using log10(100+counts)
was used to predict outages for Hurricanes Sandy,
Irene, and Matthew. The random forest model was
trained with all the storms and then was used to
predict outages for Sandy and Irene. Figures 8, 9,
and 10 show the actual vs. predicted outages for
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Hurricanes Sandy, Irene, and Matthew, respectively.
The coast has the highest amount of outages, with
areas further away having fewer outages. However,
our model tends to underpredict the high outages
that occur on the coast relative to other areas in the
hurricane region.

4.2.3 Influence of Variables in the Prediction
Model

Random forests provide a list of variable
importance, that is, how much impact the regressors
have in the model. The importance is calculated
based on the contribution to the reduction in the
out-of-sample error. The variable importance plot
displayed in Figure 6 is for the final selected model,
the all-storm data log10(100+counts) model with
three principal components. The plot helps explain
how much the MSE increases, given a variable
in the model compared to the variable randomly
assigned. The predictive model chosen indicates
that month, longitude, population density, 1- and
6-month SPI, and maximum wind speed (sustained
and gusts) contribute the most to the model. This
is further demonstrated by the partial dependence
plots.

Figure 7 shows partial dependence plots for four
variables: maximum gust speed, population density,
gust duration (wind speed above 20 m/s), and SPI
for 1, 6, and 12 months. The outages on the y-
axis are on the log scale. The plots show that
the maximum wind speed and duration of wind
above 20 m/s explain quite a bit of the variability
in outages, with population density explaining the
most. SPI at the 1- and 6-month intervals also
explains some variability. The model suggests that
wind is not the only important variable; the SPI and
population density are also needed to help predict
outages.

4.3 Comparison with Existing Work

The results of this analysis have aspects that are
similar to those of previous publications (7; 8; 5;
11; 10), as wind speed, duration, population density,
and SPI are all important indicators of the number
of outages. The partial dependence plots showed

that the higher the wind speed the more outages.
Similarly, the higher the value of SPI (soil is more
saturated based on recent precipitation) the greater
the number of outages. These results are similar to
previous findings. What differs in our analysis is
the spatial resolution. In our analysis, we used a
coarse resolution, county-level outage data, which
results in large outage counts. In previous work, the
spatial resolution was on the census track level or
finer, in some cases on a 12,000 foot (3.66 km) ×
8,000 foot (2.44 km) grid (7). The counts in the
finer spatial resolution case are magnitudes smaller
than those in the county-level data. In particular,
the results presented in Nateghi et al. (7) have
maximum values of 400 outages. The random forest
model predicts well because it does not have as
many large outages. In the case of large outages,
their model still underpredicts the outages but is not
on as large a scale as the county-level data.

Another difference is that in previous literature
the utility information was often provided directly
from the utilities, so information of transmission
was provided in some cases. The Eagle-I data
scrapes data from sites where outages are reported
from utilities. It is important to note that not
all utilities are reported in the Eagle-I data. For
example, Vermont did not have any outages
collected anywhere in the state; this is likely due
to data not being accessible rather than no outages
being reported.

5 WINTER STORMS MODEL

5.1 Winter Storms Data

The National Weather Service (NWS) maintains
a database of 48 types of weather events having
sufficient intensity to cause damage to property,
lives, and commerce. Among these event types are
six that the NWS identifies as winter storm events:
winter storm, blizzard, heavy snow, lake-effect
snow, ice storm, and sleet.

For these winter storm events, the database
includes the following information at the level of
NWS Public Forecast Zones:
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• Source of information (e.g., emergency
management personnel, law enforcement
officials, newspaper, general public, trained
storm spotters)

• Beginning and end dates and times for the event
• Brief narrative of the event

We faced several complications when working
with this database. First, winter storm events in
this database are reported at the level of NWS
Forecast Zones, which may be smaller than, larger
than, or the same as county boundaries. If multiple
counties were matched with a zone, a new record
was created for each county with the same storm
information. If multiple zones with the same storm
event corresponded to a single county, they were
merged into one record at the county level. In a few
cases, county and/or zone boundaries were redrawn
during the time of interest. If the county could not be
easily identified according to the current boundary
lines, the record was removed.

Second, the criteria for a winter storm
event to be significant vary by location, and
moreover, the occurrence of different types of
winter storms depends on regional climatology.
(NOAA National Severe Storms Laboratory) In
fact, the records included in this database are those
that meet or exceed the locally or regionally defined
warning criteria for the respective event types. For
example, the criteria for a “heavy snow” warning
may require 6 inches or more in 24 hours in one
zone and 8 inches in 12 hours in a different zone.
Furthermore, the different types of storms are not
necessarily distinct. For example, a “winter storm”
is a winter weather event that has more than one
significant hazard (e.g., snow and ice) and meets
the regional criteria for at least one precipitation
element, and a “blizzard” is a type of winter storm
that further satisfies conditions regarding sustained
wind speeds and reduced visibility due to snow. The
number of events of each type (at the county level)
from January 2011 to February 2017 is shown in
Table 11. Because of the ambiguity in the definitions
for the different storm types and the relatively small

number of certain events, such as ice storms, we
chose to combine all of the winter storm types.

Finally, unlike hurricanes, winter storm events are
not well defined—we have neither a list of dates
for historical storm events nor a simple criterion to
determine the locations affected by a storm. How
can we track the movements of a storm system
across space and time? These records are cleaned by
the regional NWS offices, so there is no global view
(across states or regions) of these storms. When two
neighboring counties experience the same winter
weather conditions, are they being affected by the
same storm? Most likely, but how do we determine
which counties are affected and the time span for
such a storm? In this database, some counties
had multiple overlapping events of different types.
There were many cases where a county experienced
more than one “event” of the same type in short
sequence. Are these part of the same storm? Some
of the answer may lie in the narrative provided
by the NWS, but the information included in this
narrative is not uniform in its level of detail or
its regional specificity. In this work, we take into
account only the latter (temporal) question. Because
historical weather data (such as precipitation) are
available only on a daily scale, we combined storm
events in the same county that occurred sequentially
with at most 24 hours between the end of the first
storm and the start of the second. Because we do
not distinguish between different types of storms
in the present analysis, we merged any events that
occurred simultaneously by taking the earliest start
time and the latest end time for the duration. Figure
12 shows the duration for the resulting winter storm
events. Most of the storms lasted only 1–2 days,
but a few storms lasted as long as 11 days. The
total number of winter storm events recorded in
each county from January 2011 to February 2017
is shown in Figure 13. It is clear that nearly every
county in the CONUS is affected by winter storms.

5.2 Eagle-I Outage Data

First, we identified the 15-minute reported outage
numbers corresponding to the duration of a storm
event. From these outage numbers, we calculated
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the maximum 2-hour sustained outage for that
event using the same method as for tropical storms
and hurricanes. Figures 14 and 15 illustrate this
calculation for a winter storm event in Cook County,
Illinois and Peoria County, Illinois. The example
of Peoria County shows that there are many time
points for which there is no reported outage number.
If outage records were not available to account for
at least a 2-hour window, the storm was removed
from our dataset. Among the storms for which
outage information did not account for a 2-hour
window were 86 storms that lasted less than 2
hours. It is important to note that a lack of outage
information does not necessarily mean that there
were no outages at that time; it simply means that
we do not know how many (if any) customers were
affected. Unfortunately, this process removed a
large number of winter storms from consideration,
particularly in the mountain states and in parts of
the Midwest. This significant loss of information
can be seen in Figure 16, which shows the number
of winter storm events in each county after merging
with the outage data.

Figure 17 displays the maximum 2-hour sustained
outage during a winter storm event for each county.
For counties that had multiple winter storm events
during the 2011–2017 period, we show the worst
case (i.e., the winter storm event associated with the
largest number of outages).

5.3 Regressors

• Latitude and longitude
• Week of the starting date of the storm, duration

of the storm
• Population density, elevation
• SPI for past 1, 6, and 12 months, matched to

the starting month of the storm (counties with
any missing values removed)

• Weather variables
• Daily precipitation: aggregated over the

duration of the storm, if applicable
• Daily snow accumulation: aggregated over

the duration of the storm, if applicable

• Daily minimum temperature: calculated
maximum and minimum value over the
duration of the storm, if applicable

• Daily maximum temperature: calculated
maximum and minimum value over the
duration of the storm, if applicable

• Daily fastest 5-second wind speed:
calculated maximum value over the duration
of the storm, if applicable

• Land cover (counties with any missing values
removed)

• Tree species
• Soil texture (not used because it was available

only for states affected by hurricanes)
• Soil moisture (not used)

We included the week of the year when the winter
storm event began to account for seasonality, i.e.,
the differing impact of a storm that occurs early in
the season and a storm that occurs in the middle of
winter. We additionally included the storm duration
to capture potential differences between a localized
storm event lasting only a few hours and a large
storm system affecting a larger region over the
course of a week or more.

For winter storm events spanning multiple
days, daily precipitation and daily snowfall were
aggregated over the relevant days of the storm
to create regressors representing the accumulated
precipitation and the accumulated snow for the
duration of the storm. For the daily minimum
and daily maximum temperature, we calculated
the overall minimum and maximum extreme daily
temperatures over the duration of the storm. For
wind, we included the maximum value over the
duration of the storm.

The other regressors included in the winter storm
models were SPI for past 1, 6, and 12 months,
latitude and longitude of the county centroid,
elevation, population density, land cover types, and
tree species.

Some of these regressors were available for only
a limited number of counties or for limited periods
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of time. Figure 18 shows the shrinking number
of winter storm events as we sequentially added
the regressors and removed any events for which
there were missing values for the corresponding
regressors. After including all regressors, 3245
historical winter storm events remained on which to
train our models. However, these events represent
storm events from only 400 unique counties. As
seen in Figure 19, these storms offer very sparse
coverage of the nation. In this map, the outage count
displayed is once again the largest sustained outage
number for that county.

5.4 Results

The winter storms have a large spread of outages,
similar to the tropical storm and hurricane data.
Although no zero outages were reported, many
counties reported a single outage. There are storms
associated with very high outage counts, but
Figure 20 shows that particularly damaging storms
resulting in outages for over 100,000 customers
make up a very small portion of significant winter
storms. To help adjust for the high counts, we
worked with outages on a log scale, similar to the
tropical storm and hurricane data.

Using raw outage counts, we fit three
progressively simpler random forest models. In
the first model, all of the regressors discussed in
the previous section were included. In the second
model, principal components for tree species and
for land cover types were included in place of the
proportional data. For each group of regressors,
the first five principal components were selected
based on the negligible marginal contribution of
the subsequent principal components. The third
model removed all regressors relating to land cover
and tree species. These same three models were
also fit using log outage counts instead of counts
on the nominal scale. The results are displayed
in Table 7. As in the models for tropical storms
and hurricanes, the models that predict outages
on a log scale explain a greater amount of the
variation in the data than models on the nominal
scale. Furthermore, the simplest model appears
to perform better. However, none of these models

appear to be capable of predicting the outages with
high accuracy.

Table 7 presents 10-fold cross-validation
estimates of RMSE and MAE for the three models
that predict outages on a log scale. We now look at
the simplest of these models, denoted as “Reduced”,
in more detail.

We investigated the forecasting ability of this
model by holding out 10% of storm events for out-
of-sample prediction. The true outages are plotted in
Figure 23, and the predicted outages are plotted in
Figure 24. The model clearly underpredicted the
large outage events and overpredicted the small
outage events.

The variable importance plot in Figure 21 shows
that the accumulated precipitation, population
density, maximum minimum temperature, and
longitude contribute the most to the reduced model,
with SPI at 1, 6, and 12 months not contributing as
much. When taking a closer look at the accumulated
precipitation from the partial dependence plots
(Figure 22), precipitation contributes more weight
than snow accumulation. The precipitation explains
quite a bit of the variability in outages. The daily
minimum temperatures, both the maximum and
the minimum, have a similar pattern: the outages
increase the greater the values. This behavior is
consistent for the other weather variables, wind
gust and daily maximum temperature. The model
suggests that accumulated precipitation is important
but that snow accumulation does not contribute as
much to the model.

6 SUMMARY

Overall, the random forest model for tropical storms
and hurricanes underperforms compared to data
that is on a finer scale from previous literature.
The magnitude of the data (hundred thousands vs.
thousands) makes it harder for the model to predict
large outages. The random forest models examined
in this analysis failed to predict the high outage
counts, as can be seen in the plot of predicted
outages and true outages for all counties in the
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training dataset displayed in Figure 25. Further
analysis of the outage data and predictors or a finer
spatial resolution and a different model approach
(one that can account for zeros in the model) may
help predict hurricanes. An example of a model that

would account for excess zeros is a zero-inflated
model. In the case of the large outage values,
extreme value analysis is an approach to identify
large events such as high outages from hurricanes.

1 FIGURES

1.1 Tropical Storms and Hurricanes

Figure 1. Number of counties per storm with reported outages
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Figure 2. The log number of outages per storm
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Figure 3. Examples from Hurricane Matthew to illustrate 2-hour sustained outage idea (Baldwin County,
Georgia)
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Figure 4. Examples from Hurricane Matthew to illustrate 2-hour sustained outage idea (Fulton County,
Georgia)

Figure 5. Alternative to the two maps: Predicted vs. true outages for predicting all storm outages
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Figure 6. Variable importance plot—log scale pca reduced model

October 2017 16



Donatella Pasqualini Electric Power Outage Forecasting

Figure 7. Partial dependence plots—log scale pca reduced model
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Figure 8. Actual outages (left) vs. predicted outages (right) for Hurricane Sandy

Figure 9. Actual outages (left) vs. predicted outages (right) for Hurricane Irene
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Figure 10. Actual outages (left) vs. predicted outages (right) for Hurricane Matthew

1.2 Winter Storms

Figure 11. Number of winter storm events by type
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Figure 12. Duration of winter storm events
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Figure 13. Frequency of winter storm events in each county from January 2011 to February 2017
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Figure 14. Examples of winter storm events to illustrate 2-hour sustained outage idea (Cook County,
Illinois)
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Figure 15. Examples of winter storm events to illustrate 2-hour sustained outage idea (Peoria County,
Illinois)
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Figure 16. Frequency of winter storm events having sustained outages from January 2011 to February
2017

Figure 17. Worst-case scenario: the number of outages during the most significant storm event in each
county from January 2011 to February 2017 (with and without regressors)
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Figure 18. Shrinking data: the number of storm events in the training dataset after sequentially merging
with regressors

Figure 19. Worst-case scenario (with regressors): the number of outages during the most significant winter
storm event in each county from January 2011 to February 2017 (restricted to events where all regressors
are available)
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Figure 20. Impact of winter storms: the frequency of reported outages of different sizes

Figure 21. Variable importance plot for the reduced model predicting log outages
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Figure 22. Partial dependence plots for the reduced model predicting log outages
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Figure 23. Predicted outages for 10% hold-out sample (at most one from each county)

Figure 24. True outages for 10% hold-out sample (at most one from each county)
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Figure 25. Predicted vs. true outages for all counties in the training data

2 TABLES

2.1 Tropical Storms and Hurricanes

Raw counts Log counts Log(100+counts)
Model MSE % Var MSE % Var MSE % Var

All storms
Full 264036997 41.62 3.3395 62.92 0.8989 69.79
3PC 240426562 46.84 3.2335 64.1 0.8651 70.92

Reduced 224447152 52.95 3.2057 64.41 0.8481 71.67

Hurricanes only
Full 614461338 42.2 2.6211 69.55 1.1446 74.01
3PC 546744328 48.57 2.5571 70.3 1.1522 73.84

Reduced 528233936 53.14 2.6906 69.25 1.2136 73.01

Table 2. Comparison of random forest models to predict outages, log outages, and log(100+counts)
outages for all storm data and hurricane-only data

Model MAE (sd) RMSE (sd)

All storms
Full 1.49 (0.05) 1.84 (0.05)
3PC 1.47 (0.04) 1.81 (0.05)

Reduced 1.45 (0.07) 1.79 (0.07)

Hurricanes only
Full 1.28 (0.07) 1.62 (0.09)
3PC 1.45 (0.06) 1.79 (0.07)

Reduced 1.49 (0.05) 1.84 (0.05)

Table 3. Cross-validation results of random forest models to predict log outages for all storm data and
hurricane-only data
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Model MAE (sd) RMSE (sd)

All storms
Full 0.725 (0.02) 0.947 (0.03)
3PC 0.714 (0.03) 0.935 (0.04)

Reduced 0.702 (0.02) 0.923 (0.04)

Hurricanes only
Full 0.879 (0.03) 1.089 (0.04)
3PC 0.869 (0.06) 1.081 (0.07)

Reduced 0.885 (0.08) 1.112 (0.08)

Table 4. Cross-validation results of random forest models to predict log(100+counts) outages for all storm
data and hurricane-only data

RF Model Predicted count interval Bias St.Dev RMSE n

Log10(counts)
0-100 -0.0964 1.0185 1.0228 1861

>100-1000 0.7379 1.5377 1.7050 1000
>1000-10000 0.6762 0.9303 1.1493 495

>10000-100000 0.7917 0.9597 1.2420 180
>100000 0.7487 0.5466 0.9122 11

Log10(100+counts)
0-100 -0.6279 0.4336 0.7625 1555

>100-1000 0.1086 0.7005 0.7086 1241
>1000-10000 0.4457 0.7270 0.8522 560

>10000-100000 0.6379 0.7214 0.9614 177
>100000 1.0050 0.7738 1.2512 14

Table 5. Bias, standard error, and root mean square error comparison for predicting all the storm data

RF Model Predicted count interval Bias St.Dev RMSE n

Hurricane Matthew
0-1000 -0.0448 0.9016 1.004 154

>1000-10000 0.4110 1.255 1.313 81
>10000-100000 1.641 1.839 2.448 40

Hurricane Sandy
0-1000 -0.4817 0.5481 0.7259 54

>1000-10000 0.8232 2.321 2.457 207
>10000-100000 2.555 3.1618 4.0433 57

Hurricane Irene
0-1000 -0.0943 1.2801 1.2799 174

>1000-10000 1.3130 4.3249 4.503 124
>10000-100000 2.0168 2.2807 3.0296 57

Table 6. Bias, standard error, and root mean square error comparison for predicting different hurricanes

2.2 Winter Storms

Raw counts Log counts
Model MSE % Var MSE % Var
Full 65880031 13.67 5.1875 26.73
5PC 63645150 16.60 5.1638 27.06

Reduced 62687074 17.85 5.1503 27.25

Table 7. Comparison of random forest models to predict outages and log outages during winter storms
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